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Abstract The fact that there are quantum observables without a simultaneous mea-
surement is one of the fundamental characteristics of quantum mechanics. In this
work we expand the concept of joint measurability to all kinds of possible measure-
ment devices, and we call this relation compatibility. Two devices are incompatible
if they cannot be implemented as parts of a single measurement setup. We introduce
also a more stringent notion of incompatibility, strong incompatibility. Both incom-
patibility and strong incompatibility are rigorously characterized and their difference
is demonstrated by examples.
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1 Introduction

Incompatibility of two quantum observables means that they cannot be implemented
in a single measurement setup. The existence of incompatible observables is a gen-
uine quantum phenomenon, and it is perhaps most notably manifested in various
uncertainty relations. The best known examples of incompatible observables are the
spin components in orthogonal directions and the canonical pair of position and mo-
mentum.

Most of the earlier studies on incompatibility have been concentrating on observ-
ables and effects (see e.g. [9] for a survey). In this work we define the notion of
incompatibility in a general way so that it becomes possible to speak about incom-
patibility of two different types of devices, e.g. incompatibility of an observable and
a channel, or an effect and an operation. Our proposed definition is a straightforward
generalization of the usual one for observables; two devices are incompatible if they
cannot be parts of a single measurement setup.

Our approach provides the possibility to separate two qualitatively different levels
of incompatibility. Namely, we will define the concept of strong incompatibility and
demonstrate that this is, indeed, more stringent condition than mere incompatibil-
ity. Strongly incompatible devices cannot be implemented on the same measurement
setup even if we were allowed to change one of its specific parts, the pointer observ-
able.

It is illustrative to note some similarities between (strong) incompatibility and
entanglement. Typically, entanglement is defined through its negation—separability.
In a similar way, incompatibility is defined through its negation—compatibility. It
is easy to intuitively grasp the notions of separable states and compatible measure-
ments, while entangled states and incompatible measurements are harder to compre-
hend. One of the best indication of a quantum regime, namely a violation of a Bell
inequality, requires both an entangled state and a collection of incompatible observ-
ables.

Our investigation is organized as follows. In Sect. 2 we define incompatibility and
strong incompatibility using the property “being part of an instrument” as a starting
point. In Sect. 3 we show that it is possible to formulate these relations in terms of
Stinespring and Kraus representations. The connection of incompatibility and strong
incompatibility to measurement models is explained in Sect. 4, and this clarifies the
operational meaning of the relations. In Sect. 5 we demonstrate all possible relations
between operations and effects. In particular, it will become clear that strong incom-
patibility is a stricter relation than mere incompatibility.

To this end, let us fix the notation. Let H be either finite or countably infinite di-
mensional complex Hilbert space. We denote by L(H) and T (H) the Banach spaces
of bounded operators and trace class operators on H, respectively. The set of quan-
tum states (i.e. positive trace one operators) is denoted by S(H). In this paper, for
simplicity, we treat only finite sets of measurement outcomes, while many statements
can be easily extended also to infinite outcome sets. We denote by Ω (or Ω ′,Ωa ,
etc.) a finite set of measurement outcomes.1

1This set is equipped with the natural σ -algebra F = 2Ω containing all subsets of Ω . Thus X ⊆ Ω is
equivalent to X ∈ F in this paper, while the latter should be employed in treating infinite outcome set Ω .
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2 Incompatible Devices

2.1 Input-Output Devices

A quantum state is described by a density matrix, while a classical state is described
by a probability distribution. By a quantum device (or shortly device), usually denoted
by D, we mean an apparatus that takes a quantum input and produces either a classical
output (→ observable), a quantum output (→ channel) or both (→ instrument)—
see Fig. 1. We can also consider probabilistic output, which means that an output is
obtained with some probability that can be less than 1. Again, the output can be either
classical (→ effect) or quantum (→ operation).

We denote by H,K two fixed Hilbert spaces associated with the input and out-
put systems, respectively. The precise definitions of the previously mentioned five
quantum devices are the following (see e.g. [7]).

• An effect is an operator E ∈ L(H) satisfying 0 ≤ E ≤ 1.
• An observable is a map A : Ω → L(H) such that A(x) is an effect for all x ∈ Ω

and
∑

x∈Ω A(x) = 1. We denote A(X) ≡ ∑
x∈X A(x) for every X ⊆ Ω .

• An operation is in the Heisenberg picture a normal completely positive map ΦH :
L(K) → L(H) satisfying ΦH (1K) ≤ 1H. An operation in the Schrödinger picture
is a completely positive map ΦS : T (H) → T (K) satisfying tr[ΦS(�)] ≤ tr[�] for
all � ∈ S(H).

• A channel is an operation Λ that satisfies ΛH (1K) = 1H in the Heisenberg picture,
or tr[ΛS(�)] = tr[�] for all � ∈ S(H) in the Schrödinger picture.

• An instrument is in the Heisenberg picture a map IH : Ω × L(K) → L(H) such
that each IH (x, ·) is an operation and

∑
x∈Ω IH (x, ·) is a channel. We denote

I(X, ·) ≡ ∑
x∈X I(x, ·) for every X ⊆ Ω . An instrument in the Schrödinger pic-

ture is a map IS : Ω × T (H) → T (K) such that each IS(x, ·) is an operation and
IS(Ω, ·) is a channel.

We will use superscripts S and H for the Schrödinger and Heisenberg pictures, re-
spectively. If a statement or equation is identical in both Heisenberg and Schrödinger
pictures, then we may leave the superscript out. Also we will often use · as a place-
holder for appropriate variable when it is evident.

It is clear that an instrument is the most comprehensive description among the five
devices since it has both quantum and classical output. We can thus introduce the
notion “part of an instrument” for any of the above five devices.

Fig. 1 A quantum device is an
apparatus having Hilbert space
H as an input and as an output
either a Hilbert space K, or a
measurement outcome set Ω , or
both
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Definition 1 Let I be an instrument. We say that:

• an effect E is part of I if there exists a set X ⊆ Ω such that

E = IH (X,1); (1)

• an operation/channel Φ is part of I if there exists a set X ⊆ Ω such that

Φ(·) = I(X, ·). (2)

If an effect/operation is part of an instrument, then we can think that the former
gives a partial mathematical description of some quantum apparatus, while the in-
strument gives a complete mathematical description of the apparatus in question.

The following simple fact will be used on several occasions in our investigation.

Lemma 1 Any operator T ∈ L(H) can be written as a linear combination of four
effects.

Proof We can decompose T into two self-adjoint operators T = TR + iTI , where
TR = 1

2 (T + T ∗) and TI = 1
2i

(T − T ∗). Further, any self-adjoint operator S can be
written as a difference of two positive operators S = S+ −S−, where S+ = 1

2 (‖S‖1+
S) and S− = 1

2 (‖S‖1− S). Finally, any positive operator P can be written as a scalar
multiple of an effect since P = ‖P ‖(P/‖P ‖) and 0 ≤ P/‖P ‖ ≤ 1. �

Proposition 1 A channel Λ is part of an instrument I with an outcome set Ω if and
only if Λ(·) = I(Ω, ·) holds.

Proof The “if” part is trivial. Let us consider the “only if” part. Suppose ΛH (·) =
IH (X, ·) for some X ⊂ Ω . We make a counter assumption that IH (X, ·) �= IH (Ω, ·).
This implies that there exists T ∈ L(K) such that IH (Ω \ X,T ) �= 0. By Lemma 1
this T can be taken so as to satisfy 0 ≤ T ≤ 1. It follows that IH (Ω \ X,1) �= 0.
Hence

1 = IH (X,1) + IH (Ω \ X,1) = ΛH (1) + IH (Ω \ X,1)

= 1 + IH (Ω \ X,1) �= 1.

This contradiction means that the counter assumption is false. �

Observables and instruments do not describe single events but collections of pos-
sible events. While for effects, operations and channels the labeling of measurement
outcomes is irrelevant, for observables and instruments this is part of their descrip-
tion. Since the measurement outcomes can be regrouped and relabeled after the mea-
surement is performed, we include a pointer function into our description.
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Definition 2 Let I be an instrument. We say that:

• an observable A with an outcome set Ω ′ is part of I if there exists a function
f : Ω → Ω ′ such that

A(X) = IH
(
f −1(X),1

)
(3)

for all X ⊆ Ω ′;
• an instrument I ′ with an outcome set Ω ′ is part of I if there exists a function

f : Ω → Ω ′ such that

I ′(X, ·) = I
(
f −1(X), ·) (4)

for all X ⊆ Ω ′.

Let us remark that since Ω and Ω ′ are finite sets, it is enough to require (3) and
(4) for all singleton sets X = {x}, x ∈ Ω ′. The equality for other sets then follows
from the fact that f −1(X ∪ Y) = f −1(X) ∪ f −1(Y ) for all subsets X,Y ⊆ Ω ′.

Example 1 (Every device is part of some instrument) For any given device we can
construct an instrument that has that device as its part. The following simple con-
structions also show that there are always uncountably many different instruments
with that property.

Let E be an effect. We fix a state �0 and define an instrument I with the out-
come set {0,1} by IH (0, T ) = tr[�0T ]E and IH (1, T ) = tr[�0T ](1 − E). Then
IH (0,1) = E and thus E is part of I .

Let A be an observable with an outcome set Ω . We fix a state �0 and define an
instrument I with the outcome set Ω by IH (x,T ) = tr[�0T ]A(x). Then IH (x,1) =
A(x) and thus A is part of I .

Let Φ be an operation. We fix a state �0 and define an instrument I with an
outcome set {0,1} by IH (0, T ) = ΦH (T ) and IH (1, T ) = tr[�0T ](1 − ΦH (1)).

In all of the previous three instances we are free to choose �0, hence we have
uncountably many different instruments that have given device as its part (and these
still need not be all the possibilities).

Let Λ be a channel. Then the above construction for operations becomes trivial and
gives only a single instrument. An alternative construction gives again infinitely many
different instruments. Namely, we fix a probability distribution p on an outcome
set Ω . We define an instrument I with the outcome set Ω by I(x, ·) = p(x)Λ(·).

2.2 Incompatiblility

The key idea behind the notion of compatibility is the fact that we can duplicate the
classical measurement outcome data and process it in various different ways. In this
way, two quite different devices can be parts of a single instrument. The interest-
ing cases are those where this kind of duplication cannot help in implementing two
different devices. Then the devices are incompatible and they manifest a significant
feature of quantum theory.
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Definition 3 Two devices D1 and D2 are compatible if there exists an instrument
that has both D1 and D2 as its parts; otherwise D1 and D2 are incompatible.

This definition is a direct generalization of the notion of coexistence of two op-
erations [5]. We also have the following results, which conclude that compatibility
generalizes the notions of coexistence of effects [8] and joint measurability of ob-
servables [10].

Proposition 2 The compatibility of observables and effects reduces to the standard
relations:

(a) Two effects E1 and E2 are compatible if and only if they are coexistent, i.e. there
exists an observable G with an outcome set Ω such that

E1 = G(X1), E2 = G(X2) (5)

for some X1,X2 ⊆ Ω .
(b) Two observables A1 and A2, with outcome sets Ω1 and Ω2, are compatible if and

only if they are jointly measurable, i.e. there exists an observable G on Ω1 × Ω2
such that

G(X × Ω2) = A1(X), G(Ω1 × Y) = A2(Y ) (6)

for all X ⊆ Ω1, Y ⊆ Ω2.

Proof (a) Suppose that E1 and E2 are coexistent, hence there exists an observable G
with an outcome set Ω that satisfies (5). We fix a state �0 and define an instrument I
by

IH (X, ·) = tr[�0·]G(X), X ⊆ Ω. (7)

Then IH (X,1) = G(X) and therefore both E1 and E2 are parts of I , hence compat-
ible.

Suppose then that E1 and E2 are compatible, hence there exists an instrument
I such that IH (X1,1) = E1 and IH (X2,1) = E2 for some X1,X2 ⊆ Ω . We set
G(X) := IH (X,1), and then G(X1) = E1 and G(X2) = E2. This means that E1 and
E2 are coexistent.

(b) This proof is very similar to the proof of (a). Suppose that A1 and A2 are
jointly measurable. By definition, there exists an observable G that satisfies (6). We
use this G to define an instrument I by (7). Then both A1 and A2 are parts of I , hence
compatible.

Suppose then that A1 and A2 are compatible. By definition, there exists an instru-
ment I such that both A1 and A2 are parts of I . The observable G(·) = IH (·,1) gives
both A1 and A2 as its functions. By Theorem 3.1 in [10] this is equivalent to joint
measurability of A1 and A2. �

In addition to generalizing the usual concepts of joint measurability of observables
and coexistence of effects, Definition 3 gives a way to speak about compatibility
between two devices of different types. First we make some simple observations.
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Proposition 3 If an operation Φ is compatible with a device D, then the effect
ΦH (1) is compatible with D.

Proof If an operation Φ is part of an instrument I , then Φ
H
(·) = IH

(X, ·) for some
set X ⊆ Ω . Then also the effect IH

(X,1) = Φ
H
(1) is part of I . �

The reverse of the implication in Proposition 3 is not valid as the constraints on
the compatibility of two operations are typically more strict as the constraints on the
related effects. This difference has been demonstrated in [5] where it was shown that
two operations � 
→ A1/2�A1/2 and � 
→ B1/2�B1/2, where A and B are effects, are
compatible either if A is a multiple of B or if A+B ≤ 1. However, the compatibility
of two effects is obviously not restricted just to these relations. For instance, two
commuting effects are always compatible [8].

The physical explanation of the fact that operations are “not so easily” compatible
as the related effects is that operations give a more detailed description than effects.
Since we are asking whether two mathematical descriptions can correspond to the
same device, it is more likely that two coarser descriptions have this property than
two finer descriptions.

The correct reverse of Proposition 3 is the following.

Proposition 4 If an effect E is compatible with a device D, then there exists an
operation Φ such that E = ΦH (1) and Φ is compatible with D.

Proof If an effect E is part of an instrument I , then E = IH
(X,1) for some set

X ⊆ Ω . Then also the operation Φ , defined as ΦH (·) := IH
(X, ·) is part of I . �

Intuitively, one can always join two “disjoint” descriptions into a total description
since there cannot be a conflict between them. In mathematical terms, this leads to
the following statements.

Proposition 5 The following conditions are sufficient for compatibility:

(a) Two effects E1 and E2 are compatible if E1 + E2 ≤ 1.
(b) An operation Φ and an effect E are compatible if ΦH (1) + E ≤ 1.
(c) Two operations Φ1 and Φ2 are compatible if ΦH

1 (1) + ΦH
2 (1) ≤ 1.

Proof The points (a) and (b) follow from (c) and Proposition 3. To prove (c), suppose
that ΦH

1 (1) + ΦH
2 (1) ≤ 1. We fix a state ξ and define a ternary instrument I by

IH (1, ·) = ΦH
1 (·), IH (2, ·) = ΦH

2 (·),
IH (3, ·) = tr[ξ ·](1 − ΦH

1 (1) − ΦH
2 (1)

)
.

Both Φ1 and Φ2 are parts of this instrument, hence they are compatible. �

It is a well known fact that two effects E,F are compatible (i.e. coexistent) if
they commute, and that a projection P is compatible with an effect E if and only if
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they commute; see e.g. p. 120 in [8] or [3]. Proposition 6 is an analogous result for
a projection and an operation. (The “only if” part of (b) can also be inferred from
Theorem 3 in [12].)

Proposition 6 Let ΦH : L(K) → L(H) be an operation.

(a) An effect E ∈ L(H) is compatible with Φ if

[
ΦH (T ),E

] = 0 ∀T ∈ L(K).

(b) A projection P ∈ L(H) is compatible with Φ if and only if

[
ΦH (T ),P

] = 0 ∀T ∈ L(K).

Proof (a) Suppose [ΦH (T ),E] = 0 for all T ∈ L(K). This implies that [ΦH (T ),√
E] = 0 and [ΦH (T ),

√
1 − E] = 0 for all T ∈ L(K). Then ΦH can be written as

ΦH (T ) = EΦH (T ) + (1 − E)ΦH (T )

= √
E

√
EΦH (T ) + √

1 − E
√

1 − EΦH (T )

= √
EΦH (T )

√
E + √

1 − EΦH (T )
√

1 − E.

We fix a state η and set

IH (0, T ) := √
EΦH (T )

√
E

IH (1, T ) := √
1 − EΦH (T )

√
1 − E

IH (2, T ) := tr[ηT ](1 − ΦH (1)
)
.

Then I is a ternary instrument with IH ({0,1}, ·) = ΦH (·) and IH (0,1) = E. Hence,
Φ and E are compatible.

(b) We need to prove the “only if” part of the statement. Suppose that P and
Φ are compatible. Thus there exists an instrument I satisfying IH (X,1) = P and
I(Y, ·) = Φ(·) for some X,Y ⊆ Ω . We make a counter assumption that there exists
T ∈ L(K) such that

[
ΦH (T ),P

] �= 0. (8)

By Lemma 1 this T can be assumed to be an effect. We write Y as a disjoint union
Y = Y1 ∪ Y2, where Y1 = Y ∩ X and Y2 = Y ∩ (Ω \ X). From (8) follows that

[
IH (Y1, T ),P

] �= 0 or (9)
[
IH (Y2, T ),P

] �= 0. (10)

Since Y1 ⊆ X and 0 ≤ T ≤ 1, we have

0 ≤ IH (Y1, T ) ≤ IH (X,T ) ≤ IH (X,1) = P.
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A positive operator below a projection commutes with that projection, thus (9) cannot
hold. In a similar way we obtain

0 ≤ IH (Y2, T ) ≤ IH (Ω \ X,T ) ≤ IH (Ω \ X,1) = 1 − P.

Thus IH (Y2, T ) commutes with 1 − P , hence also with P and (10) cannot hold.
Therefore, Φ and P must be incompatible if (8) holds. �

The preceding result leads to the following observation.

Proposition 7 If a channel Λ is compatible with all projections, then Λ is a contrac-
tion channel, i.e. ΛH (T ) = tr[ηT ]1 for some fixed state η.

Proof Suppose Λ is compatible with all projections and let T ∈ L(H). By Propo-
sition 6 we have [ΛH (T ),P ] = 0 for all projections P , hence ΛH (T ) = c(T )1 for
some number c(T ) ≥ 0. Because ΛH (·) is a unital normal positive linear map, c(·) is
a unital normal positive linear functional. Hence, c(·) is identified by some state η on
L(H) via the trace formula, c(T ) = tr[ηT ]. �

A device D is called trivial if it is compatible with all devices of the same kind.
A paradigmatic example is a coin tossing observable—this gives a random outcome
irrespective of the input state. We can obviously toss a coin simultaneously with an-
other measurement, and hence they must be compatible. In the following we demon-
strate the compatibility relation by recalling more about trivial devices.

Example 2 (Trivial devices) An effect E is trivial if and only if E = e1 for some
number 0 ≤ e ≤ 1. This is a simple consequence of the fact that an effect and a pro-
jection are coexistent if and only if they commute. It also follows that an observable
A is trivial if and only if A(x) is a trivial effect for each x. The only trivial operation is
the null operation � 
→ 0 as shown in [5]. It follows that there are no trivial channels
nor trivial instruments.

The general definition of compatibility allows us to consider also devices that are
compatible with all devices of some different type.

Any contraction channel � 
→ η, where η is a fixed state, is compatible with every
observable. Namely, if A is an observable, we define an instrument by

IH (x,T ) = tr[ηT ]A(x). (11)

The contraction channels are the only channels with the property that they are com-
patible with every observable. This is the result of Proposition 7.

Any trivial observable is compatible with every channel. Namely, if x 
→ p(x)1 is
a trivial observable (here p is a fixed probability distribution) and Λ is a channel, we
define an instrument by formula

IH (x, ·) = p(x)ΛH (·). (12)

The trivial observables are the only observables that are compatible with every chan-
nel. This follows from the fact that any non-trivial observable disturbs some state [2],
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which means that the identity channel that preserves all input states cannot be com-
patible with this observable.

The preceding two statements are information-disturbance counterparts in the
compatibility language. While the latter one states that there is no information with-
out disturbance, the former one shows that complete information means complete
destruction.

2.3 Strong Incompatibility

If two devices D1 and D2 are incompatible, there is no single instrument that would
give both D1 and D2 as its parts. Of course, we can always separately implement
D1 and D2 with two different instruments. We can then ask whether these two in-
struments need to be completely different or whether they have some similarity. This
motivates the following definitions.

Definition 4 Two devices D1 and D2 are weakly compatible if there exist two in-
struments I1 and I2 such that D1 is part of I1 and D2 is part of I2, and that
I1(Ω, ·) = I2(Ω, ·). Otherwise we say that D1 and D2 are strongly incompatible.

Clearly, compatible devices D1 and D2 are weakly compatible. Or in other words,
strongly incompatible devices are incompatible. In some case strong incompatibil-
ity can be either equivalent to incompatibility or impossible. For this we have the
following simple observations.

Proposition 8

(a) A channel Λ is strongly incompatible with another device D if and only if they
are incompatible.

(b) All pairs of observables/effects are weakly compatible.

Proof (a) Follows from Proposition 1.
(b) Let A1 and A2 be two observables. We fix a state η and define instruments I1

and I2 by

IH
j (x, ·) = tr[η·]Aj (x).

Then IH
1 (Ω, ·) = IH

2 (Ω, ·) = tr[η·]1. Hence, A1 and A2 are weakly compatible. The
weak compatibility in the other two cases (effect-effect and effect-observable) can be
proved in a similar way. �

We also have analogous statements as in Propositions 3 and 4.

Proposition 9

(a) If an operation Φ is weakly compatible with device D, then the effect ΦH (1) is
weakly compatible with D.

(b) If an effect E is weakly compatible with a device D, then there exists an operation
Φ such that E = ΦH (1) and Φ is weakly compatible with D.
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Proof The proofs are similar to the proofs of Propositions 3 and 4. �

For two operations Φ1 and Φ2, we denote Φ1 ≤ Φ2 if there exists an operation Φ ′
such that Φ1 + Φ ′ = Φ2. This relation is a partial order in the set of operations, and
has been studied e.g. in [1]. Clearly, to see whether Φ1 ≤ Φ2 holds, we only need to
check if the mapping Φ2 − Φ1 is completely positive.

Let us remark that even if Φ1 and Φ2 are completely positive, their difference
Φ2 − Φ1 can be positive without being completely positive. For instance, the linear
maps Φ1,Φ2 : T (C2) → T (C2), defined by

ΦS
1 (�) = tr[�]1/3, ΦS

2 (�) = (
tr[�]1 + �T

)
/3, (13)

are operations (here ·T is the transposition in some fixed bases). The difference of
Φ2 − Φ1 is a multiple of the transposition map, thus positive but not completely
positive.

If Φ1 and Φ2 are comparable (i.e. Φ1 ≤ Φ2 or Φ2 ≤ Φ1), then they are compatible.
We can see this by defining an instrument I with the outcome set Ω = {1,2,3} as
follows (assuming that Φ1 ≤ Φ2):

IH (1, ·) = ΦH
1 (·), IH (2, ·) = (

ΦH
2 − ΦH

1

)
(·),

IH (3, ·) = tr[·ξ ](1 − ΦH
2 (1)

)
,

where ξ is some fixed state.
An operation Φ is called pure if it can be written in the form Φ(·) = W · W ∗

for some bounded operator W . We recall from Proposition 4 in [5] that two pure
operations Φ1 and Φ2 are compatible if and only if they are comparable or their sum
Φ1 + Φ2 is an operation. Unlike for pure operations, generally compatibility of two
operations cannot be expressed as a simple condition using the above partial order.
These conditions are only sufficient, not necessary.

Weak compatibility has a clear characterization in terms of this partial order.
Namely, the weak compatibility of two operations reduces to the requirement that
the operations have a common upper bound.

Proposition 10 Let Φ1 and Φ2 be two operations. The following conditions are
equivalent:

(i) Φ1 and Φ2 are weakly compatible.
(ii) There exists a channel Λ such that Φ1 ≤ Λ and Φ2 ≤ Λ.

(iii) There exists an operation Φ such that Φ1 ≤ Φ and Φ2 ≤ Φ .

Proof (i) ⇒ (ii): Assuming (i), there exist two instruments I1 on Ω1 and I2 on Ω2
such that I1(X1, ·) = Φ1(·) for some X1 ⊆ Ω1, I2(X2, ·) = Φ2(·) for some X2 ⊆ Ω2,
and I1(Ω1, ·) = I2(Ω2, ·) ≡ Λ(·), where Λ is a channel. It is now clear, that

Φa(·) = Ia(Xa, ·) ≤ Ia(Xa, ·) + Ia(Ωa \ Xa, ·) = Ia(Ωa, ·) = Λ(·)
for a = 1,2.
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(ii) ⇒ (iii): Every channel is an operation, hence (ii) implies (iii) trivially.
(iii) ⇒ (i): We have Φ1 ≤ Φ and Φ2 ≤ Φ , which means that Φ̄1 := Φ − Φ1 and

Φ̄2 := Φ − Φ2 are operations. We define an instrument I1 with the outcome set Ω =
{1,2,3} as follows:

IH
1 (1, ·) = ΦH

1 (·), IH
1 (2, ·) = Φ̄H

1 (·), IH
1 (3, ·) = tr[·ξ ](1 − ΦH (1)

)
,

where ξ is some fixed state. In a similar way we define an instrument I2 related to
the operation Φ2,

IH
2 (1, ·) = ΦH

2 (·), IH
2 (2, ·) = Φ̄H

2 (·), IH
2 (3, ·) = tr[·ξ ](1 − ΦH (1)

)
.

Since I1(Ω, ·) = I2(Ω, ·) we conclude that Φ1 and Φ2 are weakly compatible. �

The following statement follows immediately.

Proposition 11 A channel Λ is weakly compatible (hence also compatible) with an
operation Φ if and only if Φ ≤ Λ holds.

For some operations Φ of specific type, it is easy to write down explicitly all
channels Λ satisfying Φ ≤ Λ. In the next proof and also later we will use the fact
that if Φ is an operation such that ΦH (1) is a rank-1 operator, then Φ is of the form
ΦS(·) = tr[·ΦH (1)]ξ for some state ξ ; see Proposition 8 in [6].

Proposition 12 Let Φ be an operation such that 1 − ΦH (1) is a rank-1 operator.
Then a channel Λ satisfies Φ ≤ Λ if and only if

ΛS(·) = ΦS(·) + (
1 − tr

[
ΦS(·)])ξ (14)

for some state ξ .

Proof Clearly, if (14) holds, then Φ ≤ Λ.
Suppose then that a channel Λ satisfies Φ ≤ Λ, i.e. there exists an operation Φ ′

such that Φ + Φ ′ = Λ. In particular, ΦH (1) + Φ ′H (1) = ΛH (1) = 1. We denote
E ≡ 1 − ΦH (1) = Φ ′H (1). Since E is a rank-1 operator, the operation Φ ′ is of the
form

Φ ′S(�) = tr[�E]ξ (15)

for some state ξ . Inserting this into Λ = Φ + Φ ′ we conclude (14). �

3 Mathematical Formulations of Incompatibility

In this section we formulate the incompatibility relations using first the Stinespring
representation and then Kraus operators.
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3.1 Incompatibility in Terms of Stinespring Dilation

Let us begin with the well-known standard Stinespring representation theorem. (See
for e.g. [13].)

Theorem 1 (Stinespring representation) Let ΦH : L(K) → L(H) be an operation.
There exist a Hilbert space K′ and an operator V :H →K ⊗K′ satisfying

ΦH (T ) = V ∗(T ⊗ 1)V

for all T ∈ L(K). The doublet (K′,V ) is called the Stinespring representation of Φ .
It holds that ‖Φ‖ = ‖ΦH (1)‖ = ‖V ‖2. In addition, if (L(K) ⊗ 1)VH is dense in
K ⊗K′, the representation is called minimal. The minimal representation exists and
is determined uniquely up to unitary operations on K′. That is, if (K′′,V ′) is another
minimal Stinespring representation, there exists a unitary operator U : K′ → K′′ sat-
isfying V ′ = (1 ⊗ U)V .

The ordering between operations can be expressed in terms of the Stinespring
representation. The following lemma is known as the Radon-Nikodym theorem for
completely positive maps [14].

Theorem 2 (Radon-Nikodym theorem for operations) Let ΦH
1 : L(K) → L(H) be

an operation. We denote its minimal Stinespring representation by

ΦH
1 (T ) = V ∗(T ⊗ 1)V ,

where V : H → K ⊗ K′ is a linear operator. Let ΦH
2 : L(K) → L(H) be another

operation. Then Φ2 ≤ Φ1 holds if and only if there exists an effect E ∈ L(K′) such
that

ΦH
2 (T ) = V ∗(T ⊗ E)V

holds for every T ∈ L(K). If E exists, then it is unique.

This statement leads to the following observations.

Proposition 13 (Operation-operation weak compatibility) Let ΦH
1 and ΦH

2 be two
operations. They are weakly compatible if and only if there exist a Hilbert space K′,
an isometry V : H →K⊗K′, and (not necessarily compatible) effects E,F ∈ L(K′)
satisfying

ΦH
1 (T ) = V ∗(T ⊗ E)V,

ΦH
2 (T ) = V ∗(T ⊗ F)V.

Proof “If” part: It is easy to see that ΛH : L(K) → L(H) defined by ΛH (T ) =
V ∗(T ⊗1)V is a channel satisfying Φ1 ≤ Λ and Φ2 ≤ Λ and invoking linearity of V

concludes this part of the proof.
“Only if” part: By Proposition 10, there exists a channel Λ satisfying Φ1 ≤ Λ and

Φ2 ≤ Λ. Then Theorem 2 is applied. �
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Proposition 14 (Channel-operation compatibility) Let ΛH : L(K) → L(H) be a
channel with a minimal Stinespring representation

ΛH (T ) = V ∗(T ⊗ 1)V ,

where V :H → K⊗K′ is an isometry. An operation ΦH : L(K) → L(H) is compat-
ible with ΛH if and only if there exists an effect E ∈ L(K′) such that

ΦH (T ) = V ∗(T ⊗ E)V

holds for every T ∈ L(K). If E exists, then it is unique.

Proof This follows from Proposition 11 and Theorem 2. �

To discuss the compatibility between other combinations of devices, we have to
generalize the Radon-Nikodym theorem. Since we are assuming that Ω is finite, the
following result easily follows from Theorem 2.

Proposition 15 (Instrument-channel compatibility) Let ΛH : L(K) → L(H) be a
channel with a minimal Stinespring representation

ΛH (T ) = V ∗(T ⊗ 1)V ,

where V :H → K⊗K′ is an isometry. An instrument IH defined on Ω is compatible
with ΛH if and only if there exists an observable A on L(K′) defined on Ω such that

IH (x,T ) = V ∗(T ⊗ A(x)
)
V

for every x ∈ Ω and T ∈ L(K). If A exists, then it is unique.

The result leads to the following characterization of compatible operations.

Proposition 16 (Operation-operation compatibility) Let ΦH
1 and ΦH

2 be operations
L(K) → L(H). They are compatible if and only if there exist a Hilbert space K′, an
isometry V : H →K ⊗K′, and compatible effects E,F ∈ L(K′) satisfying

ΦH
1 (T ) = V ∗(T ⊗ E)V

ΦH
2 (T ) = V ∗(T ⊗ F)V

for all T ∈ L(K).

Proof Let us begin with “if part”. Thanks to the compatibility between E and F , there
is an observable A on Ω and X1,X2 ⊆ Ω such that E = A(X1) and F = A(X2) hold.
Following the proof of “if” part of Proposition 15, one can show that I(·, ·) defined
by I(X,T ) := V ∗(T ⊗ A(X))V for each X ⊆ Ω and T ∈ L(K) is an instrument
although this representation is not necessarily the minimal representation. Because
I(X1, ·) = ΦH

1 (·) and I(X2, ·) = ΦH
2 (·) hold, ΦH

1 and ΦH
2 are compatible.
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To prove “only if” part assume that ΦH
1 and ΦH

2 are compatible. Then there ex-
ists an instrument I(·, ·) on Ω and X1,X2 ⊂ Ω satisfying I(X1, ·) = ΦH

1 (·) and
I(X2, ·) = ΦH

2 (·). The instrument I is compatible with the channel I(	, ·). The
“only if” part of Proposition 15 implies that with the minimal Stinespring repre-
sentation of the channel I(	, ·) there exists a POVM {A(x)} satisfying I(X,T ) =
V ∗(T ⊗ A(X))V for any X. The effects E = A(X1) and F = A(X2) are compatible
and we obtain the wanted equations. �

Similar characterizations of compatibility between other combinations are easily
derived. For instance, we have the following. (Because the proof is similar to the
above proposition, it is omitted.)

Proposition 17 (Operation-effect compatibility) Let ΦH be an operation and E an
effect. They are compatible if and only if there exist a Hilbert space K′, an isometry
V : H →K ⊗K′, and compatible effects F,G ∈ L(K′) satisfying

ΦH (T ) = V ∗(T ⊗ F)V ∀T ∈ L(K),

E = V ∗(1 ⊗ G)V.

3.2 Incompatibility in Terms of Kraus Operators

In this subsection we will focus on the situation when the input and output Hilbert
spaces are the same, H. The Kraus decomposition theorem [8] states that a map
ΦS : T (H) → T (H) is an operation if and only if there exists a countable set of
bounded operators {Kj }j∈J ⊂ L(H), labeled by an index set J , such that

ΦS(·) =
∑

j∈J

Kj · K∗
j ,

∑

j∈J

K∗
j Kj ≤ 1. (16)

For a fixed operation Φ , the choice of operators Kj , referred to as Kraus operators,
is not unique. In any case, when comparing two Kraus decompositions we can al-
ways assume that they have the same number of elements by adding null operators if
necessary. We typically choose J ⊆ N.

Suppose I is an instrument. We fix a Kraus decomposition {Kx;j } for each oper-
ation I(x, ·), hence I can be written in the form

IS(x,�) =
∑

j

Kx;j �K∗
x;j ∀� ∈ S(H).

Conversely, a countable set of bounded operators {Kj }j∈J ⊂ L(H) that satisfies∑
j K∗

j Kj = 1 determines an instrument. We can simply choose Ω = J and define

IS(j, �) = Kj�K∗
j .

Since instruments can be written in Kraus decomposition, it is clear that the rela-
tions of compatibility and weak compatibility can be formulated in terms of Kraus
operators. In the following we give formulations for the operation-operation and
operation-effect pairs.
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Proposition 18 Two operations Φ1 and Φ2 are:

(a) compatible if and only if there exists a sequence of bounded operators {Kj }j∈J

and index subsets J1, J2 ⊆ J such that

ΦS
1 (·) =

∑

j∈J1

Kj · K∗
j , ΦS

2 (·) =
∑

j∈J2

Kj · K∗
j (17)

and
∑

j∈J

K∗
j Kj = 1; (18)

(b) weakly compatible if and only if there exist sequences of bounded operators
{Kj }j∈J , {Lj }j∈J and index subsets J1, J2 ⊆ J such that

ΦS
1 (·) =

∑

j∈J1

Kj · K∗
j , ΦS

2 (·) =
∑

j∈J2

Lj · L∗
j (19)

and
∑

j∈J

K∗
j Kj =

∑

j∈J

L∗
jLj = 1, (20)

∑

j∈J

Kj · K∗
j =

∑

j∈J

Lj · L∗
j . (21)

Proof (a) See [5, Proposition 2].
(b) The “if” part is simple—define IS

1 (j, �) := Kj�K∗
j and IS

2 (j, �) := Lj�L∗
j .

Then clearly Φ1 is part of I1 and Φ2 is part of I2 while equality I1(J, ·) = I2(J, ·)
holds.

The “only if” part is proved as follows. Suppose Φ1 and Φ2 are weakly compat-
ible. Then there exist instruments I1 and I2 such that I1(Ω1, ·) = I2(Ω2, ·) while
Φa(·) = Ia(Xa, ·) for a = 1,2 and some X1 and X2. Taking union of Kraus de-
compositions for Φ1 and I1(Ω1 \ X1, ·) we obtain Kraus decomposition {Kj }j∈J

of I1(Ω1, ·) such that Φ1 is expressed via the subset J1 ⊆ J ⊆ N of these Kraus
operators. Similarly we obtain Kraus operators for the second instrument {Lj }j∈J ′
such that Φ2 is decomposed via subset J2 ⊆ J ′ ⊆ N of these Kraus operators. The
index set can be chosen to be N for both decompositions, as we can always supple-
ment a set of Kraus operators by zero operators. Thus, Eq. (19) follows. The remain-
ing two equations follow from the fact that IH

1 (Ω1,1) = IH
2 (Ω2,1) = 1 and that

I1(Ω1, ·) = I2(Ω2, ·). �

In a similar way we can also prove the following result for operation-effect pairs.

Proposition 19 An operation Φ and an effect E are:

(a) compatible if and only if there exists a sequence of bounded operators {Kj }j∈J

and index subsets J1, J2 ⊆ J such that

ΦS(·) =
∑

j∈J1

Kj · K∗
j , E =

∑

j∈J2

K∗
j Kj (22)
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and
∑

j∈J

K∗
j Kj = 1. (23)

(b) weakly compatible if and only if there exist sequences of bounded operators
{Kj }j∈J , {Lj }j∈J and index subsets J1, J2 ⊆ J such that

ΦS(·) =
∑

j∈J1

Kj · K∗
j , E =

∑

j∈J2

L∗
jLj (24)

and
∑

j∈J

K∗
j Kj =

∑

j∈J

L∗
jLj = 1, (25a)

∑

j∈J

Kj · K∗
j =

∑

j∈J

Lj · L∗
j . (25b)

Proof The proofs of these claims follow from Proposition 18 when taken together
with Propositions 4 and 9(b), respectively. �

4 Incompatibility in Terms of Measurement Models

The concepts and results introduced so far can be put into a wider perspective by
considering measurement models. We start by recalling some basic definitions from
quantum measurement theory [4].

Definition 5 A quintuple M = (V1,V2, η,U,F) is a (generalized) measurement
model if

V1, V2 are Hilbert spaces,
η is a state on V1,
U is a unitary operator from H⊗ V1 to K ⊗ V2,
F is an observable in V2.

The observable F, called pointer observable, gives us a measurement outcome
x ∈ Ω . An input state � is transformed into a state �′

x (conditioned on x)—see Fig. 2.
The measurement outcome probabilities and the state transformations are given by

Fig. 2 Measurement model
M = (V1,V2, η,U,F). Here η

is an initial state on the ancillary
system V1 which is connected
with the measured system H by
a global unitary operator U
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the usual quantum formulae. Namely, an outcome x ∈ Ω is recorded with the proba-
bility

p(x | �) = tr
[
U� ⊗ ηU∗1K ⊗ F(x)

]
(26)

and the input state � transforms into the unnormalized state �′
x ,

�′
x = trV2

[
U� ⊗ ηU∗1K ⊗ F(x)

]
. (27)

Here trV2[·] denotes the partial trace over ancillary Hilbert space V2. In these formu-
las we considered only simple events which are of the form “The obtained measure-
ment outcome is 42.” We do not have to consider only those events that correspond
to single measurement outcomes x ∈ Ω , but we can group measurement outcomes
into subsets. This means that we can also consider events of the form “The obtained
measurement outcome is between 1 and 10.” Therefore we can replace x by X in
Eqs. (26) and (27). Similarly as the definitions of “being part of an instrument” we
can define useful notions of “being part of a measurement model”—we say that:

• an effect E is part of M if there exists a set X ⊆ Ω such that

E = trV1

[
1H ⊗ ηU∗1K ⊗ F(X)U

]; (28)

• an operation Φ is part of M if there exists a set X ⊆ Ω such that

ΦS(�) = trV2

[
U� ⊗ ηU∗1K ⊗ F(X)

] ∀� ∈ S(H), (29)

or equivalently

ΦH (T ) = trV1

[
1H ⊗ ηU∗T ⊗ F(X)U

] ∀T ∈ L(H). (30)

Being part of M simply means that, having the measurement model M available,
we can implement E (resp. Φ) by ignoring everything else but some component of
M—see Fig. 3. Since channels are special types of operations, we see that:

• a channel Λ is part of M if

ΛS(�) = trV2

[
U� ⊗ ηU∗] ∀� ∈ S(H), (31)

or equivalently

ΛH (T ) = trV1

[
1H ⊗ ηU∗T ⊗ 1V2U

] ∀T ∈ L(H). (32)

Fig. 3 Some parts of a measurement model are (a) effect and (b) operation
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Clearly, each measurement model determines a unique channel. Useful observation
is that this channel does not depend on the choice of the pointer observable F, but
only on the ancillary state η and measurement coupling U .

As it was the case with the definitions through instruments, also here we need to
take into consideration that observables and instruments do not describe single events
but collections of possible events. Since the measurement outcomes can be regrouped
and relabeled after the measurement is performed, we again include a pointer function
into our description. Thus, we say that

• an observable A with an outcome set Ω ′ is part of M if there exists a function
f : Ω → Ω ′ such that

A(X) = trV1

[
1H ⊗ ηU∗1K ⊗ F

(
f −1(X)

)
U

] ∀X ⊆ Ω ′; (33)

• an instrument I with an outcome set Ω ′ is part of M if there exists a function
f : Ω → Ω ′ such that ∀� ∈ S(H),X ⊆ Ω ′

IS(X,�) = trV2

[
U� ⊗ ηU∗1K ⊗ F

(
f −1(X)

)]
, (34)

or equivalently ∀T ∈ L(H),X ⊆ Ω ′

IH (X,T ) = trV1

[
1H ⊗ ηU∗T ⊗ F

(
f −1(X)

)
U

]
. (35)

It has been proved in [11] that every instrument IH from L(H) to L(H) is part of
a measurement model. We are going to need not only that result but also its proof in
the following text, so we present the proof of this fact in the case of a finite outcome
space for reader’s convenience.

Proposition 20 Let IH be an instrument from L(K) to L(H). Then there exists a
measurement model M = (V1,V2, η,U,F ) satisfying

IH (X,T ) = trV1

[
1H ⊗ ηU∗T ⊗ F(X)U

]
(36)

for all subsets X ⊆ Ω .

Proof We fix a Stinespring representation (A, V ) for the channel IH (Ω, ·), i.e. A is
a Hilbert space and V : H → K⊗A is an isometry. By Proposition 15 there exists an
observable E on L(A) satisfying

IH (X,T ) = V ∗(T ⊗ E(X)
)
V (37)

for all T ∈ L(K) and X ⊆ Ω . We introduce (see also Fig. 4) an auxiliary Hilbert
space M whose dimension is infinite and a unit vector e ∈ M to define an isometry
S : H →K ⊗A⊗M by

Sψ := (V ψ) ⊗ e. (38)

Then

IH (X,T ) = S∗(T ⊗ E(X) ⊗ 1M
)
S. (39)
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Fig. 4 Stinespring
representation with extension
showing that for every
instrument there exists some
measurement model

The isometry S can be dilated to a unitary operator S̃ from H ⊕ (K ⊗ A ⊗ M) to
itself by setting

S̃(ψ ⊕ φ) := −S∗φ ⊕ (√
1 − SS∗φ + Sψ

)
. (40)

Clearly, S̃(ψ ⊕0) = 0⊕Sψ . We introduce another infinite-dimensional Hilbert space
V1 and a unit vector e0 ∈ V1. We can define a unitary operator G : H ⊗ V1 → H ⊕
(K ⊗A⊗M) satisfying

Gψ ⊗ e0 = ψ ⊕ 0. (41)

As M is infinite-dimensional, we can also define a unitary operator H : H ⊕ (K ⊗
A⊗M) → K ⊗A⊗M satisfying

H(0 ⊕ φ ⊗ e) = φ ⊗ e (42)

for all φ ∈ K ⊗ A. We define V2 := A ⊗ M. Then U := HS̃G : H ⊗ V1 → K ⊗ V2
is a unitary operator and it satisfies

U(ψ ⊗ e0) = Sψ = (V ψ) ⊗ e. (43)

Set η := |e0〉〈e0| and F(X) := E(X) ⊗ 1. Now, for all ψ ∈ H, we have
〈
ψ

∣
∣IH (X,T )ψ

〉 = 〈
V ψ

∣
∣T ⊗ E(X))V ψ

〉

= 〈
(V ψ) ⊗ e

∣
∣T ⊗ E(X) ⊗ 1V (ψ) ⊗ e

〉

= 〈
ψ ⊗ e0

∣
∣U∗(T ⊗ F(X)

)
Uψ ⊗ e0

〉

= 〈
ψ

∣
∣ trV1

[
1H ⊗ ηU∗T ⊗ F(X)U

]
ψ

〉

This concludes the proof. �

Based on this result we can now prove the following.

Proposition 21 Let IH
1 and IH

2 be two instruments from L(K) to L(H). If they
satisfy IH

1 (Ω1, ·) = IH
2 (Ω2, ·), then it is possible to set their measurement models as

M1 = (V1,V2, η,U,F1) and M2 = (V1,V2, η,U,F2).

Proof The construction of V1, V2, η and U of the measurement model in the proof
of Proposition 20 depends only on IH (Ω, ·) and is not observable E dependent. The
only difference is possible in pointer observable which is X-dependent. �
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Fig. 5 A measurement model
with U = Uswap shows that all
observables are weakly
compatible as the choice of
pointer observable F
corresponds exactly to the
observable in consideration A

Proposition 22 Two devices D1 and D2 are

(a) compatible if and only if there exists a measurement model M such that both D1

and D2 are parts of M;
(b) weakly compatible if and only if there exist two measurement models M1 =

(V1,V2, η,U,F1) and M2 = (V1,V2, η,U,F2), differing only in their pointer ob-
servables F1 and F2, such that D1 is part of M1 and D2 is part of M2.

Proof Propositions 20 and 21 prove the only if part of both statements. The if part
is easily concluded from Eqs. (34) and (35) which show, that if device D is part of
measurement model M, then it is also part of instrument I corresponding to M as all
the possible devices that are parts of M can be recovered also from I . �

We can thus see that compatibility is equivalent to the existence of a common
measurement model, while weak compatibility is equivalent to the existence of a
common measurement model up to different choices of pointer observables. This
equivalence reveals the clear operational meaning behind these concepts. We can
even use Proposition 22 as an alternative route to prove facts about compatibility
and weak compatibility—this is demonstrated in the following example that proves
Proposition 8 using measurement models.

Example 3 Let us consider a measurement model M = (H,H, η,U,F), where η is
an arbitrary state and U = Uswap is the swap operator defined as

Uswapψ ⊗ ϕ = ϕ ⊗ ψ ∀ψ,ϕ ∈H. (44)

From Eq. (33) we get A = F (when f is chosen to be the identity function), which
means that every observable is part of the same measurement model up to a change
of a pointer observable (see also Fig. 5). Thus, we obtain an alternative proof of
Proposition 8(b).

Note that we can also see that Proposition 8(a) holds since Eqs. (31) and (32)
show that changing the pointer observable does not change the channel. This in turn
means that a channel is incompatible with some device if and only if they are strongly
incompatible, as you can set the pointer observable for channel to be the same as the
pointer observable for the device.
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5 Examples of Possible Relations

In this section we show that all the incompatibility relations are possible between
operations and effects, except the strong incompatibility of two effects. The latter
was noticed to be impossible in Proposition 8. The overall situation is summarized
in Table 1. The first row in Table 1 is clear—there are compatible devices in all
three different pairs. The last entry of the second row is also clear since there exist
incompatible effects. We will demonstrate that the remaining four situations (circled)
are possible.

Our examples are all related to qubit systems, hence H = K = C
2. Let σx , σy and

σz be the Pauli operators on C
2. We denote Pj = 1

2 (1+σj ) and P−j = 1
2 (1−σj ) for

j = x, y, z, and Pj and P−j are hence one-dimensional projections.

Example 4 (Two operations that are incompatible but not strongly incompatible) We
consider operations ΦS

1 (�) = Px�Px and ΦS
2 (�) = 1

2σx�σx . They are both pure op-
erations (i.e. have only one Kraus operator), hence compatible if and only if they are
comparable or Φ1 + Φ2 is an operation (see the discussion before Proposition 10).
It is therefore easy to verify that they are incompatible. To see that Φ1 and Φ2 are
weakly compatible, we define a channel Λ by

ΛS(�) = 1

2
� + 1

2
σx�σx.

Substituting 1 = Px + P−x and σx = Px − P−x we see that Λ can be written in the
alternative form

ΛS(�) = Px�Px + P−x�P−x.

We thus have Φ1 ≤ Λ and Φ2 ≤ Λ, therefore Φ1 and Φ2 are weakly compatible by
Proposition 10.

It is easy to give examples of strongly incompatible channels as any pair of two
different channels is incompatible. In the following we provide more interesting ex-
ample where the strongly incompatible operations are not channels.

Example 5 (Two operations that are strongly incompatible) We consider operations
ΦS

1 (�) = Px�Px and ΦS
2 (�) = Pz�Pz. Since 1 − ΦH

1 (1) = P−x is a rank-1 operator,
by Proposition 12 the operation Φ1 satisfies Φ1 ≤ Λ1 for some channel Λ1 iff

ΛS
1 (�) = Px�Px + tr[�P−x]ξ1

Table 1 Summary of possible
relations. The circled points are
demonstrated in this section

op-op op-ef ef-ef

Compatible � � �
Incompatible but weakly compatible �© �© �
Strongly incompatible �© �© ×
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for some state ξ1. Similarly, the operation Φ2 satisfies Φ2 ≤ Λ2 for a channel Λ2 if
and only if

ΛS
2 (�) = Pz�Pz + tr[�P−z]ξ2

for some state ξ2. We have ΛS
1 (Px) = Px and ΛS

2 (Px) = 1
2Pz + 1

2ξ2. Since Px �=
1
2Pz + 1

2ξ2 for any choice of ξ2, we conclude that Λ1 �= Λ2 irrespective of the choices
of ξ1 and ξ2. Therefore, Φ1 and Φ2 are strongly incompatible.

Example 6 (Effect and operation that are incompatible but not strongly incompatible)
We consider the projection Px and the Lüders operation ΦS(�) = Pz�Pz. Since the
effects Px and ΦH (1) = Pz are incompatible, we conclude from Proposition 3 that
Px and Φ are incompatible. To see that Px and Φ are weakly compatible, let us fix
normalized eigenvectors φx± and φz± for σx and σz, respectively. We observe that
the channel � 
→ tr[�]Pz can be written in the alternative forms

tr[�]Pz = |φz+〉〈φz+|�|φz+〉〈φz+| + |φz+〉〈φz−|�|φz−〉〈φz+|
and

tr[�]Pz = |φz+〉〈φx+|�|φx+〉〈φz+| + |φz+〉〈φx−|�|φx−〉〈φz+|.
Using Proposition 19 we then conclude that Px and Φ are weakly compatible.

Example 7 (Effect and operation that are strongly incompatible) We consider the

projection Px and the Lüders operation ΦS(�) = A
1
2 �A

1
2 with A = Pz + 1

2P−z. Let
us make a counter assumption that Px and Φ are weakly compatible. By Proposition 9
this means that there is an operation Φ ′ weakly compatible with Φ and satisfying
Φ ′H (1) = Px . By Proposition 10 there exists a channel Λ such that Φ ≤ Λ and
Φ ′ ≤ Λ. The effect 1 − A = 1

2P−z is rank-1, hence by Proposition 12 we conclude
that Φ ≤ Λ is possible only if Λ has the form

ΛS(�) = ΦS(�) + 1

2
tr[�P−z]ξ (45)

for some state ξ . On the other hand, since Φ ′H (1) = Px and Px is rank-1, then by
Proposition 8 of [6] we first have

Φ ′S(�) = tr[�Px]ξ1

for some state ξ1 and, by applying Proposition 12 again, we conclude that Φ ′ ≤ Λ is
possible only if Λ has the form

ΛS(�) = tr[�Px]ξ1 + tr[�P−x]ξ2 (46)

for some states ξ1, ξ2. Inserting � = Pz,P−z in both (45) and (46), and equaling them,
we obtain

Pz = 1

2
ξ1 + 1

2
ξ2,

1

2
P−z + 1

2
ξ = 1

2
ξ1 + 1

2
ξ2.



Found Phys (2014) 44:34–57 57

But Pz �= 1
2P−z + 1

2ξ for any state ξ , hence we arrive to a contradiction and the
counter assumption is therefore false.

6 Conclusions

The notions of coexistence and joint measurability are in this paper united into a
single definition of compatibility. This is done by relating all measurement devices
to instruments. This definition then allows one to study the compatibility of objects
also of different types, e.g. operations and effects. We defined also a tighter notion of
incompatibility called strong incompatibility. These notions are explored by means
of the Stinespring dilation, which shows an intriguing relation of compatibility fea-
tures of the studied devices to the compatibility of the effects/observables underlying
the construction of the dilation. These notions were also studied by Kraus decom-
position. Relating the compatibility relations to measurement models illustrates an
operational meaning of these notions in a simple way—compatibility of two devices
is conditioned by a single measurement model for both devices, while for weak com-
patibility the two devices are required to have a single measurement model up to the
pointer observable. Both notions of compatibility are distinct in such a way that there
exist devices which are weakly compatible, yet still incompatible.
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